技術(shù)文章
Technical articles
熱門搜索:
摩方精密3D打印
2微米高精度微納3D打印系統(tǒng)
microArch S240A10μm高精度微納3D打印
器官芯片3d打印
nanoArch P14010μm精度微納3D打印系統(tǒng)
nanoArch S1302μm精度微納3D打印系統(tǒng)
微納陶瓷3D打印服務(wù)
nanoArch S14010μm精度微納3D打印系統(tǒng)
nanoArch P15025μm高精密3D打印系統(tǒng)
3D打印微針
microArch S240A光固化陶瓷3D打印機(jī)
微流控芯片3D打印
10微米高精度微納3D打印系統(tǒng)
精密連接器3D打印
nanoArch S1403d打印精密醫(yī)療內(nèi)窺鏡
光固化3D打印
隨著摩爾定律逐漸逼近物理極限,集成電路制程微縮在物理層面和成本方面均遭遇雙重挑戰(zhàn)。在此背景下,精密芯片架構(gòu)和異構(gòu)集成已成為延續(xù)算力增長的關(guān)鍵路徑。因此,如何實(shí)現(xiàn)復(fù)雜系統(tǒng)的高效、可靠且經(jīng)濟(jì)的封裝方案已成為行業(yè)面臨的核心挑戰(zhàn)。如今,微納3D打印技術(shù)正以其突破性的技術(shù)特質(zhì)為制造業(yè)提供創(chuàng)新解決方案。摩方精密面投影微立體光刻(PμSL)技術(shù)憑借超高光學(xué)精度與突破傳統(tǒng)限制的結(jié)構(gòu)制造能力,正在努力改進(jìn)半導(dǎo)體封裝基板、中介層及射頻元件的生產(chǎn)體系,推動(dòng)產(chǎn)業(yè)向精密化、集成化方向轉(zhuǎn)型升級。在半導(dǎo)體...
抗腫瘤免疫治療通過激活或增強(qiáng)患者的免疫系統(tǒng)來精確地攻擊腫瘤細(xì)胞,是一種革命性的腫瘤內(nèi)源性治療理念。然而,乳腺癌等免疫抑制實(shí)體瘤對于免疫治療仍然表現(xiàn)出較差的臨床反應(yīng)。這種免疫抑制生態(tài)位可以通過多種途徑扭轉(zhuǎn),T細(xì)胞就在這一過程中起著核心作用。T細(xì)胞的持續(xù)激活依賴于cGAS-STING通路,該通路不僅在先天免疫中很重要,而且是適應(yīng)性免疫反應(yīng)的關(guān)鍵調(diào)節(jié)器。傳統(tǒng)的外源性STING激動(dòng)劑在臨床應(yīng)用中存在明顯的局限性:一方面,帶負(fù)電荷的分子結(jié)構(gòu)阻礙了有效穿透細(xì)胞膜,導(dǎo)致細(xì)胞內(nèi)遞送效率不理想...
間充質(zhì)干細(xì)胞(MSCs)因其能通過旁分泌機(jī)制發(fā)揮免疫調(diào)節(jié)與組織再生作用,被廣泛應(yīng)用于炎癥性疾病及創(chuàng)傷(包括創(chuàng)面修復(fù))的治療。相較于懸浮的MSCs,以細(xì)胞球體形式存在的MSC球體(mesenspheres)在創(chuàng)面愈合中展現(xiàn)出更顯著優(yōu)勢,因其具有更強(qiáng)的旁分泌功能,且能在常溫條件下保存較長時(shí)間。傳統(tǒng)干細(xì)胞遞送主要依賴注射方式,但該方法具有侵入性,會增加患者痛苦。因此,亟需開發(fā)非侵入性干細(xì)胞遞送策略。目前雖已開發(fā)多種敷料載體,但基于干細(xì)胞球的敷料仍面臨四大技術(shù)瓶頸:成球效率低、創(chuàng)面分...
類器官芯片是生命科學(xué)與工程技術(shù)交叉融合的前沿產(chǎn)物,正為精準(zhǔn)醫(yī)療、新藥研發(fā)、疾病治療等提供全新的解決路徑。然而,其制造過程面臨結(jié)構(gòu)復(fù)雜、尺度精密、材料多樣等挑戰(zhàn)。摩方精密以微納3D打印技術(shù)打破瓶頸,不僅幫助科研機(jī)構(gòu)培育出厘米級類器官模型,還推動(dòng)器官芯片從實(shí)驗(yàn)室走向臨床前應(yīng)用,為未來醫(yī)療生態(tài)注入高精度制造的新動(dòng)能。01:類器官芯片是什么?為何它意義重大?類器官(Organoid)是利用干細(xì)胞在體外構(gòu)建出具有特定器官功能的三維細(xì)胞聚集體。器官芯片(Organ-on-a-chip)則...
氧化石墨烯(GO)作為一種二維石墨烯衍生物,因其表面富含羧基、環(huán)氧基和羥基等含氧官能團(tuán)而具備優(yōu)異的親水性和溶液分散性,可通過經(jīng)濟(jì)高效的氧化剝離工藝制備。然而,GO單層結(jié)構(gòu)的高柔韌性使其難以直接構(gòu)建穩(wěn)定的三維宏觀結(jié)構(gòu),限制了其在生物醫(yī)學(xué)領(lǐng)域的進(jìn)一步應(yīng)用。針對這一挑戰(zhàn),來自成均館大學(xué)、延世大學(xué)、中央大學(xué)、香港理工大學(xué)等聯(lián)合研究團(tuán)隊(duì)提出了一種基于馬蘭戈尼效應(yīng)的創(chuàng)新策略,通過調(diào)控GO懸浮液的乙醇濃度、顆粒尺寸、溶液pH值及黏度等參數(shù),在錐形聚合物微孔中實(shí)現(xiàn)可控對流與溶劑蒸發(fā),從而制備...
在精準(zhǔn)醫(yī)療時(shí)代,如何安全有效地穿透人體第一道防線——皮膚屏障,成為藥物遞送和生物傳感的核心挑戰(zhàn)。傳統(tǒng)注射器帶來的疼痛與感染風(fēng)險(xiǎn),以及口服藥物的生物利用度瓶頸,科研人員從大自然中汲取靈感,從而催生出了仿生微針技術(shù)。然而制造這些仿生精密結(jié)構(gòu)曾讓科研人員舉步維艱。傳統(tǒng)微加工技術(shù)難以兼顧復(fù)雜幾何形狀與微米級精度,材料選擇也極為受限。當(dāng)全球科研團(tuán)隊(duì)在微針制造的道路上摸索前行時(shí),摩方精密微納3D打印技術(shù)以2μm的工業(yè)級超高精度,為這場醫(yī)療革命提供了關(guān)鍵支撐。無痛高效醫(yī)療的破局者:仿生微針...
在乳腺癌化療中,阿霉素因其強(qiáng)效性被廣泛使用,然而高達(dá)50%患者會出現(xiàn)耐藥反應(yīng),導(dǎo)致療效驟降,預(yù)后不佳。其耐藥機(jī)制較為復(fù)雜,尤其是與線粒體代謝重編程密切相關(guān)。近日,武漢大學(xué)藥學(xué)院黎威教授團(tuán)隊(duì)與武漢大學(xué)生命科學(xué)學(xué)院宋質(zhì)銀教授團(tuán)隊(duì)合作在《ACSNano》期刊發(fā)表題為:“Mitochondria-TargetedMicroneedlesReverseDoxorubicinResistanceviaApoptosis-FerroptosisSynergy”的研究論文,提出一種創(chuàng)新策略—...
周圍神經(jīng)損傷(Peripheralnerveinjury,PNI)是一種常見的外傷性疾病,常由車禍、戰(zhàn)傷、工傷和醫(yī)療事故等引起。PNI的典型臨床表現(xiàn)為受損神經(jīng)所支配的區(qū)域出現(xiàn)感覺和運(yùn)動(dòng)功能障礙,其嚴(yán)重程度因損傷程度而異。這種疾病給患者帶來了極大的痛苦與不便,嚴(yán)重影響了他們的生活質(zhì)量;同時(shí),也給患者與社會帶來了沉重的經(jīng)濟(jì)負(fù)擔(dān)。PNI的傳統(tǒng)治療方法可分為手術(shù)治療和非手術(shù)治療兩類。非手術(shù)治療方法包括電刺激、磁刺激、激光光療等,而手術(shù)治療方法包括神經(jīng)縫合術(shù)和神經(jīng)移植術(shù)(包括同種異體移...